Traffic Management in the Era of VACS (Vehicle Automation and Communication Systems)

Prof. Markos Papageorgiou
Dynamic Systems and Simulation Laboratory,
Technical University of Crete, Chania, Greece
1. WHY TRAFFIC MANAGEMENT (TM)?

- Motorised road vehicle: A highly influential invention → Vehicular traffic
- Vehicles share the road infrastructure among them, as well as with other (vulnerable) users: TM needed
- Few vehicles: Static TM for safety
- Many vehicles: Dynamic TM for efficiency
Basic elements of an automatic control system

Technology (Sensors, communications, computing, actuators): Skeleton
Methodology (Data processing, control strategy): Intelligence
Current TM Systems (ITS)

- **Process**: conventional vehicle flow
- **Sensors**: spot sensors (loops, vision, magnetometers, radar, …)
- **Communications**: wired
- **Computing**: central, decentralised, hierarchical
- **Actuators**: road-side (TS, RM, VSL, VMS, …)
2. EMERGING VACS (Vehicle Automation and Communication Systems)

- Significant efforts: Automotive industry, Research community, Government agencies
- Mostly vehicle-centric: safety, convenience
- In-vehicle systems (automated vehicles), e.g. ACC
- V2I or cooperative systems (connected vehicles), e.g. CACC
Future TM Systems (C-ITS)

- **Process**: enhanced-capability vehicle flow
- **Sensors**: vehicle-based
- **Communications**: wireless, V2V, V2I, I2V
- **Computing**: massively distributed
- **Actuators**: in-vehicle, individual commands
Implications/Exploitation for traffic flow efficiency?

- **TRAMAN21**: TRAffic MANagement for the 21st Century (ERC Advanced Investigator Grant)
Intelligent vehicles may lead to dumb traffic flow (efficiency decrease \Rightarrow congestion increase)

Why?
- ACC with long gap (\Rightarrow capacity)…
- …or sluggish acceleration (\Rightarrow capacity drop)
- Conservative lane-change or merge assistants
- Underutilized dedicated lanes
- Inefficient lane assignment
- Uncoordinated route advice
- …

What needs to be done in advance/parallel to VACS developments?
3. MODELLING

- Currently not sufficient traffic-level penetration of VACS → no real data available
- Analysis of implications of VACS for traffic flow behaviour
- Also needed for design and testing of traffic control strategies
- Microscopic/Macroscopic traffic flow modelling
Microscopic Modelling

- No ready available tools
- Research (open-source) tools: documentation, GUI, ...
- Commercial tools: closed; or elementary coding of VACS functions
ACC traffic efficiency

Macroscopic Modelling

- Very few research works
- Different penetration rates
- Macroscopic lane-changing
Macroscopic simulation of traffic flow (spatio-temporal evolution of traffic density) close to an on-ramp using the GKT model, combined with a novel ACC/CACC modeling approach. Left: manual cars; Middle: ACC-equipped cars; Right: CACC-equipped cars.

4. MONITORING/ESTIMATION

- Traffic density/queue estimation for traffic control
- Exploitation of abundant new real-time information from connected vehicles
- Mixed traffic, various penetration levels
- Fusion with conventional detector data
- Reduction (…replacement) of infrastructure-based sensors
Freeway traffic estimation scheme

Estimation case-study

Highway A20 from Rotterdam to Gouda, the Netherlands
(data: courtesy Prof. B. van Arem)
Estimation results

Urban road/network traffic estimation (with new data)

- OD estimation
- Road queue length estimation
- Link spillback detection
- Incident detection
5. TRAFFIC CONTROL

- Which conventional traffic control measures can be taken over? – In what form?
- Which new opportunities arise for more efficient traffic control?
- Increased control granularity (e.g. by lane, by destination, flow splitting)
- Vehicle speed control
- Efficient lane assignment
- Improved incident detection and management
Vehicle-level tasks:

- How would traffic look like if all vehicles were automated?
- Space-time dependent change (control) of vehicle behaviour?
- ACC gap and acceleration
- Eco-driving
- Vehicle trajectory control
Local-level tasks:

- Urban intersection
 - Speed control (reduction of stops)
 - Platoon-forming while crossing urban intersections (increased saturation flow) \rightarrow longer queues
 - Dual vehicle \leftrightarrow traffic signal communication
 - Vehicle cooperation
 - No/virtual traffic signals
 - Crossing sequence
 - Safe and convenient vehicle trajectories
 - Vulnerable road users
 - Mixed traffic?
 - Combination…
Local task example: **bottleneck control**

- Vehicle speed control \(\rightarrow\) mainstream metering
- Mitigation of capacity drop
- Conventional VSL or equipped vehicles

Bottleneck control: Simulation results
Link/Network-level tasks:

- Route guidance

- Urban road networks
 - Offset control (reduction of stops)
 - Platoon-forming: Stronger intersection interconnections (increased saturation flow, queues)
 - Saturated traffic conditions?
 - Handling?
 - Storage space?
 - Detrimental impact?
Link-level control

- Control actuators

Link control case study

Monash Freeway (M1), Melbourne, Australia
(data: courtesy VicRoads)
Link control results
6. FUNCTIONAL/PHYSICAL ARCHITECTURE

Conventional TM Architecture

Various options for task share among RSC and TCC
Decentralised Vehicle-Embedded TM

- Self-organisation (e.g. bird flock or fish school)
- Single vehicle sensors: Is this sufficient information for sensible TM actions?
Decentralised Vehicle-Embedded TM

- V2V Communication: Extended traffic flow information
- How far ahead/behind should a vehicle be able to “see” for sensible TM?
- Where is data aggregation taking place?
- How to deal with mixed traffic?
- What about network-level TM? (ramp metering, route guidance)
Hierarchical TM

- **Vehicle level**: ACC, obstacle avoidance, lane keeping, …
- **V2V level**: CACC, cooperative lane-changing, cooperative merging, warning/alarms, platoon operations
- **Infrastructure level**: speed, lane changing, headways, platoon size, ramp metering, route guidance
7. CONCLUSIONS

- Intelligent vehicles may lead to dumb traffic flow – if not managed appropriately
- Connect VACS and TM communities for maximum synergy
- TM remains vital while VACS are emerging