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Abstract 

Given a range of traffic related sustainability problems, the question for policy makers arises 

what measures should be taken to reach their objectives as much as possible. Multi-objective 

optimization is useful to support these decisions, because it results in an overview of possibly 

optimal solutions. This Pareto set can be very large, especially if more than two (mainly 

opposed) objectives are involved. This is also the case when optimizing infrastructure 

planning in a multimodal passenger transportation network, with accessibility, use of urban 

space by parking, operating deficit and climate impact as objectives. Methods are presented to 

identify promising solutions from the Pareto set. This involves adding post-optimization 

constraints to objective functions values, selecting certain decision variables (i.e. measures to 

be taken) based on political preferences and looking for the best compromise solutions. These 

methods make the Pareto set more useful as decision support information since they 

demonstrate the next step in multi-objective option prioritization. 

 

 

 

Keywords 

Multimodal passenger transportation networks, multi-objective optimization, multicriteria 

analysis, decision support, genetic algorithm 
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1 Introduction 

Highly urbanized regions in the world nowadays face well known sustainability problems in 

the traffic system, like congestion, use of scarce space in cities by parking of vehicles and the 

emission of greenhouse gases. A shift from car to public transport (PT) modes is likely to 

alleviate these problems. Optimal extension of the PT network contributes to this shift by 

enhancing the quality of trips made by PT. However, investments in PT infrastructure require 

large financial recourses. To take more advantage out of the existing PT infrastructure, 

facilitating an easy transfer from private modes (bicycle and car) to PT modes (bus, tram, 

metro, train) may stimulate the use of PT, without the need for big investments in large 

infrastructural developments. This transfer can be eased by network developments that enable 

multimodal trips (that combine private and public modes), like opening new park and ride 

facilities, opening of new train stations or opening new or changing existing PT service lines. 

 

When such transportation network developments are planned, the decision is often based on 

an evaluation of a few pre-defined scenarios. The composition of the scenarios is usually 

based on expert judgment, and the assessment usually is executed using multi criteria 

analysis. However, the scenario that is selected as the best may not be the best overall: it can 

very well be that this scenario can be improved. Therefore another method is to optimize the 

network (known as the network design problem, NDP), for example maximizing the 

accessibility subject to constraints on externalities, such as an emission reduction target or a 

budget constraint. This results in one optimal network solution. However, it does not provide 

insight in the dependencies between objectives, i.e. the extent to which the objectives are 

opposed or aligned and no information is provided on the possibilities to improve the network 

further if the budget is slightly increased. Another common method is to combine a set of 

objectives using a weighted sum, where the weights represent the compensation principle 

between the objectives. However, setting these weights is not trivial: if these are determined 

in advance, uncertainty concerning these weighting factors is not incorporated and the 

sensitivity of the outcome to these factors is not known in advance. For these reasons in this 

paper another approach is adopted, a so-called multi objective network optimization, that 

enables us to identify trade-offs between objectives (see also Coello Coello (2006)). Still this 

is a simplification of real world decision making, where even a specific aspect of the problem 

(i.e. sustainability) may be operationalized in several ways. However, when the objectives are 

defined in cooperation with the decision makers, the most important aspects are explicitly 

taken into account.  

 

NDPs have received a lot of attention in the literature, in many different versions. One 

subclass of problems is the transit network design problem, which has been studied in various 

ways, as reviewed by Guihaire and Hao (2008). This includes greedy algorithms, evolutionary 

algorithms and design meetings involving expert judgments. Another subclass of problems is 

the unimodal road network design problem, which has also been widely studied (Yang and 

Bell 1998). 

 

As is also identified in the more recent review by Farahani et al. (2013), a more specific class 

is the combination of public and private modes: the multimodal network design problem. In 

this area, previous studies addressed several decision problems and, accordingly, several ways 

to model the choices that travellers have in a multimodal network, of which the most relevant 

studies are mentioned here. Miandoabchi et al. (2012) design road link capacity and bus 

routes using two types of evolutionary metaheuristics, where the traveller may choose modes 

between car and bus in the lower level. Hamdouch et al. (2007) describe the problem of 
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pricing private and public links, with a mode choice for the traveller between car and car 

combined with metro. García and Marín (2002) focus on park and ride: parking capacity and 

pricing are decision variables and mode choice between car, metro and park and ride are 

available in the model. Uchida et al. (2007) focus on development of a probit-based lower 

level model, where the multimodal network is modelled by a hyper-network, enabling 

advanced modelling of trips that combine private and public modes. The NDP problem is 

addressed as well, on a primitive network with the frequency of 2 PT lines as decision 

variables, for which a local linear approximation is formulated to obtain a solution efficiently 

in terms of time.  

 

Another more specific class is considering the NDP as a multi-objective problem. For 

examples, the following relations between objectives can be found in the literature. Travel 

time and construction costs clearly compete in the case of road network design (Chen et al., 

2010). Travel time and CO emissions clearly compete in the case of urban road network 

design (Cantarella and Vitetta, 2006). Next, Sumalee et al. (2009) include three objectives: 

social welfare improvement, revenue generation and equity and show that trade-offs exist 

between all three objectives. Finally, Miandoabchi et al. (2012) maximise user benefits, 

passenger share of the bus mode, service coverage and minimises average generalized travel 

cost for a bus mode trip simultaneously, but does not give any insight into how these 

objectives interact. 

 

To our knowledge Miandoabchi et al. (2012) is the only paper combining multi-objective 

optimization with a multimodal NDP, considering both new street construction and lane 

additions / allocations as well as redesign of bus routes. The focus is on the development of 

the metaheuristics to solve the problem: the performance of a hybrid genetic algorithm and a 

hybrid clonal selection algorithm are compared, using multiple test networks. In the lower 

level, car and bus are distinguished as separate modes.  

 

The first contribution of this paper is to apply multi-objective optimization to the multimodal 

NDP, including multimodal trips in the lower level: the traveller can choose between using a 

single private or public mode, or using a combination of public and private modes (a mode 

chain). This enables a focus on multimodal network developments as decision variables, 

combining park and ride and new train stations (that can also be reached by bicycle) with 

frequency setting of PT lines. This optimization problem is described in section 2.1. The 

optimization framework is applied on a real world network (section 2.2). The usefulness of 

the method is illustrated by a clear presentation of the information that is provided by the 

Pareto optimal set, in the form of trade-offs between objectives (section 3.1 and 3.2). As a 

second contribution, we show the next step in multi-objective driven option prioritization, by 

presenting a stepwise reduction procedure that enables decision makers to choose one final 

solution for implementation (section 3.3), and a method to choose a final solution by 

interactively setting weights (section 3.4). In section 4 of the paper we draw conclusions.  

2 Problem definition 

The transportation network design problem is often solved as a bi-level optimization problem 

(Farahani et al., 2013), to correctly incorporate the reaction of the transportation system users 

to network changes, as is argued by dell'Olio et al. (2006) and Tahmasseby (2009), see Figure 

1. The upper level represents the behaviour of the network authority, optimizing system 

objectives. In the lower level the travellers minimize their own generalized costs (e.g. travel 

time, cost), by making individually optimal choices in the multimodal network, considering 
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variety in travel preferences among travellers. The network design in the upper level interacts 

with the behaviour of the travellers in the network: the lower level. The lower level is a 

constraint for the upper level problem, since the upper level cannot dictate the behaviour of 

the users in the lower level. Any network design the network authority chooses results in a 

network state (e.g. travel times and flows), from which the system objectives can be derived. 

The bi-level linear programming problem is already NP-hard (Gao et al., 2005), so any 

problem of this type is NP-hard. Therefore, heuristics are needed to solve the bi-level NDP for 

larger networks. The huge number of feasible solutions and the non-convexity of the objective 

function necessarily requires the adoption of metaheuristic algorithms (DôAcierno et al., 

2014). 

 

Figure 1: The bi-level optimization problem 

2.1 Mathematical formulation  

2.1.1 Network and demand definition 

The multimodal transportation network is defined as a directed graph G, consisting of node 

set N, link set A, a line set L and a stop set U. For each link one or more modes are defined 

that can traverse that link with a certain speed and capacity: the link characteristicsaC . 

Transportation zones and act as origins R and destinations S and are subsets of N. Total fixed 

transportation demand q is stored in a matrix with size |R|×|S|. Furthermore, transit service 

lines L are defined as ordered subsets Al within A and can be stop services or express services. 

PT flows can only traverse transit service lines. Transit stations or stops U are defined as a 

subset within N. Consequently, a line l traverses several stops. The travel time between two 

stops and the frequency of a transit service line l are line characteristics lC . Access / egress 

modes and PT are only connected through these stops. Whether a line calls at a stop u or not, 

is indicated by stop characteristics uC . All together, the transportation network is defined by 

( , , , )G N A L U , where A, L and S are further specified by aC , lC  and uC . 

2.1.2 Optimization problem 

We define a decision vectory  (or a solution), that consists of V decision variables:

{ }1, , , ,v Vy y y y= . Y is the set of feasible values for the decision vector y (also called 

decision space). The objective vector Z  (consisting of W objective functions, 

{ }1, , , ,w WZ Z Z Z= ) depends on the value of the decision vectory . Every Z  is part of the 

so called objective space, and in principle Z  may be any value in W , but depending on its 

meaning, an objective function may be subject to natural bounds. In this paper we will suffice 

with a formulation that states that the lower level should be in user equilibrium (see Eq. 1 and 

section 2.1.4). For a more detailed formulation of the optimization problem we refer to 

(Brands and van Berkum, 2014). 

min ( ),Z y subject to    

Upper level:

Optimizing system objectives

Lower level: 

Optimizing objectives of individual users

Network state Decision variables
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   y YÍ       (1) 

   ( ) ( ) ( )( ), ( ) , ( ) , ( )a l sG N A C y L C y S C y satisfies SUE for q 

2.1.3 Multi -objective optimization: Pareto optimality 

Mathematically, the concept of Pareto optimality is as follows. If we assume two 

decision vectors 
'

,
i i

y y YÍ , then 
i

y  is said to strongly dominate 
'i

y iff  

'
( ) ( )w wi i

Z y Z y w< "  (also written as 
'i i

y y ). Additionally,
i

y  is said to weakly 

dominate (or cover) 
'i

y  iff
'

( ) ( )w wi i
Z y Z y w¢ "  (also written as 

'i i
y y ). All solutions 

that are not weakly dominated by another known solution are possibly optimal for the 

decision maker: these solutions form the Pareto-optimal set P. 

2.1.4 Lower level model 

The lower level model calculates the network flows through the multimodal network. 

Therefore, transportation demand is assumed to be fixed, but mode choice and route choice of 

travelers is flexible. As defined in the previous section, the decision variables typically 

involve multimodal trip making, for example a park and ride facility involves combining car 

and PT to a park and ride trip and a new train station may involve combining bicycle and PT 

to a bike and ride trip. To correctly take into account these effects, combinations of different 

access and egress modes are defined in mode chains. These mode chains are seen as separate 

modes in the mode choice model, which comprises a nested logit model with choice between 

car and PT in the main nest and choice between mode chains in the PT subnest. More details 

of this model can be found in (Brands et al., 2014a). 

2.2 Study area 

The case study area covers the Amsterdam Metropolitan Area in The Netherlands (Figure 2). 

This area has an extensive multimodal network with pedestrian, bicycle, car and transit 

infrastructure. Transit consists of 586 bus lines, 42 tram and metro lines and 128 train lines, 

which include local trains, regional trains and intercity trains. Bicycles can be parked at most 

bus stops and at all train stations. A selection of transit stops facilitates park-and-ride 

transfers. Origins and destinations are aggregated into 102 transportation zones. Important 

commercial areas are the city centres of Amsterdam and Haarlem, the business district in the 

southern part of Amsterdam, the harbour area and airport Schiphol. Other areas are mainly 

residential, but still small or medium scale commercial activities can be found.  
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Figure 2: Map of the study area, showing transportation zones, railways, roads. 

2.2.1 Objective functions 

In this paper we consider 4 policy objectives related to sustainability, concerning 

accessibility, use of urban space by parking, climate impact and costs. These objectives are 

operationalized as follows (more details can be found in (Brands and van Berkum, 2014)). In 

our case of a fixed total demand, total travel time (TTT) is used to represent accessibility in 

1Z . The urban space used by parking (USU) is represented by the number of car trips to or 

from zones that are classified as highly urban, because such a trip requires a parking space 

that cannot be used for other urban land uses (2Z ). These alternative land uses give additional 

value to property (Luttik, 2000). Operating deficit of the PT system (OpD) is formulated as 

3Z , rather than as a budget constraint, to provide explicit insight in the relation between costs 

and other objectives. Cost parameters follow from Dutch PT operating practice. CO2 

emissions (CE) represent climate impact (4Z ). All 4 objectives are to be minimized. 

2.2.2 Decision variables 

In the network of the study area, 37 decision variables are defined related to transfer facilities 

or to PT facilities. The decision variables are based on regional policy documents and on 

interviews with policy makers in the study area. For every potential network development, a 

decision variable
vy is defined in advance (see table 1). Opening / closure of train stations, 

intercity status of train stations and opening / closure of park and ride (P&R) facilities are 

represented by binary variables. For transit line frequency, a discrete set of choice options is 

predefined, depending on the expected load for that transit line. Network developments are 

only included as a candidate location if spatial and capacity constraints are met. For example, 

a P&R facility is only potentially opened if the corresponding station is served by PT. The 

characteristics of links, lines and stops that are not candidate locations are fixed at one value. 

Furthermore, the car and bicycle networks are assumed to be fixed. In this case, the feasible 

region Y contains approximately 7*10
10

 possible decision vectors. 

Table 1: Overview of decision variables in the multimodal network design problem. 

Decision var-

iable index v 

Possible 

values of vy  

Represents 

real value 

 
Description 

Almere

Amsterdam

Haarlem

Zaanstad

Hoofddorp
Schiphol
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1-6 { }0,1  Existence  Opening / closure of train stations 

7-9 { }0,1  Existence  Intercity status of train stations 

10-16 { }0,1  Existence  Opening / closure of P&R facilities 

17,21,22,24 { }1 2

3 3
0, , ,1  { }0, 4,8,12   Frequency of bus lines 

18,19,20,23 { }1 2

3 3
0, , ,1

 
{ }0, 2, 4,6   Frequency of bus lines 

25-32,34,36 { }1
3

0,
 

{ }0, 2   Frequency of local train lines 

33,35 { }1 2

3 3
0, , ,1

 
{ }0, 2, 4,6   Frequency of local train lines 

37 { }0,1
 

Existence  Extension of a tram line 

2.3 Solution method 

The optimization problem defined in Eq. 1 is solved using the evolutionary algorithm Ů-

NSGAII (Kollat and Reed, 2006). This method was earlier shown to outperform the well-

known predecessor of the algorithm NSGAII (Deb et al., 2002) when applied to the same case 

study in Brands et al. (2014b), especially when limited function evaluations are possible due 

to high computation time. A more detailed description of the algorithm can be found in the 

same paper. 

3 Results 

The optimization algorithm produces a Pareto set as a result. The Pareto set contains 

information, that is presented in various ways in this section. This helps to better understand 

the network design problem in a multimodal context and to finally choose one solution from 

the Pareto set for implementation in a multi-objective option prioritization process. Firstly, the 

trade-offs between objectives are shown. Examples are shown for pairs of objectives that are 

mainly opposed to each other and where the relation between the two is less clear. The latter 

case is clarified by plotting the corresponding values of a third objective. Secondly, a stepwise 

reduction procedure is presented, enabling decision makers to choose one final solution for 

implementation, based on additional bound to objective functions as well as selecting specific 

measures to be implemented.  

 

In total 2384 solutions were calculated during the execution of the algorithm. From these 

solutions, 210 were Pareto optimal (i.e. non-dominated). This Pareto set is an approximation 

of the real Pareto set, since it would take too much computation time to calculate all solutions 

and thus the true Pareto set is not known. For the case study, the calculation of one solution 

takes approximately 6.5 minutes, implying that execution of the optimization algorithm takes 

almost two weeks of computation time (using a computer with an IntelÈ CoreÊ i7 CPU 860 

@ 2.8GHz and a 4 GB RAM). Note that the Ů-NSGAII algorithm has possibilities for parallel 

computing (all solutions in one generation could in theory be computed in parallel), if it 

would be desirable to reduce computation time. 

3.1 Traditional visualisation 

The scatter plot shown in Figure 2 is a common way to visualize a Pareto set, especially to 

show trade-offs between objectives. Since only two objectives can be shown per objective, 

several plots are needed to show all interactions between objectives in a scatterplot matrix 

(Lotov and Miettinen, 2008). Here, only 2 pairs of 2 objectives are shown. The plots also 

show solutions which are not Pareto optimal when only the two objectives in the plot are 

considered, but these solutions are Pareto optimal as a result of the four considered objectives 

during optimization. The first plot for urban space used (USU) and PT operating deficit 



Using results from multi-objective optimization as decision support information in multimodal passenger 

transportation network design 10 

 

 

(OpD) shows a clear trade-off. The first improvements in USU are cheap, but further 

improvements become more expensive in terms of OpD. The second pair of objectives is total 

travel time (TTT) and CO2 emissions (CE). These objectives are rather in line with each 

other: two clusters may be observed, one with lower TTT and lower CE and one with higher 

values for both objectives. On the other hand, within the lower left cluster also a trade-off 

between the two objectives can be observed. 

 

 

Figure 2: Two scatter plots of the Pareto set: one dot represents one solution in the set, where the 

corresponding scores for the two objective values can be read on the two axes. 

A parallel coordinates plot (see Figure 3) captures all 4 objectives in one plot (as used earlier 

by Kasprzyk et al. (2013) ). Normalization per objective is required in this type of plots, 

because the four objectives have different orders of magnitude. The normalized values range 

from 0 to 1, corresponding to the minimum per objective and the maximum per objective. 

When interpreting these normalized value, note that one objective may have a large absolute 

difference between maximum and minimum values and another objective may have a small 

absolute difference (in case the first objective can be influenced strongly by the decision 

variables and the latter objective cannot). This is especially relevant when weight factors are 

used to combine normalized objectives.  

 

In a parallel coordinates plot trade-offs between objectives cannot be observed as directly as 

in a scatter plot. Using a colour scale to represent one specific objective value improves this. 

When looking at the colour distribution, it can be observed that high TTT implies low OpD, 

but usually also high USU. The relation with CE is less clear, but roughly TTT and CE are in 

line (as was earlier observed in the scatter plot). Putting the objectives in a different order on 

the horizontal axis and colouring based on different objectives may provide different insights.  
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Figure 3: Parallel coordinates plot of the Pareto set: one line represents one solution, where the 

normalized values of the 4 objective values are plotted in the 4 columns. The lines are coloured using their 

value for total travel time.  

3.2 More dimensional scatter plots 

By using different colours for the dots in a scatter plot, one additional objective is included in 

the scatter plot (see Figure 4). This way of visualisation is earlier referred to as decision map 

(Lotov and Miettinen, 2008). A limited number of categories is defined for the 3
rd

 objective 

which correspond to types of dots as shown in the legend. This type of representation can for 

instance be used to visualize the effect of introducing a constraint for the 3
rd

 objective on the 

Pareto front of the two objectives at the axes, i.e. its effect on which solutions remain Pareto 

optimal and their related outcome concerning the two other objectives.  
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Figure 4: A 2D scatterplot for total travel time and operating deficit, with a distinction between CO2 

emissions categories (also called decision map).  

It can be observed that solutions with high CE only occur in an area of the plot with low OpD 

and medium to high TTT. On the other hand, a very interesting observation is that  when only 

solutions with low CE emissions are considered (i.e. less than 1350 tons), still a large 

variation exists in scores for TTT and OpD. With other words, when an additional constraint 

is set for CE, there is still a choice possible between solutions with low TTT, with low OpD 

or trade-off solutions with intermediate values for both objectives.  

 

A similar plot is shown in Figure 5, where the 3
rd

 objective is represented by a continuous 

colour scale. This could be referred to as a continuous decision map. It contains more detailed 

information then the decision map based on categories, but it may be more difficult to read. 

Which of the two to prefer depends on the desired accuracy of the 3
rd

 objective. Especially in 

the centre of the plot interesting trade-off information is found: the solutions closest to the 

lower left corner of the plot are the best when only TTT and OpD are considered (assuming 

the corresponding weight factor), but moving a little to the upper right direction results in a 

large gain in CE at little costs in terms of TTT and OpD.  



Using results from multi-objective optimization as decision support information in multimodal passenger 

transportation network design 13 

 

 

 

Figure 5: Continuous decision map of the Pareto set 

It is even possible to include information on more objectives in such a figure, by using arrows 

instead of dots in a scatter plot, where the orientation of the arrow represents a fourth 

objective and the size of the arrow represents a fifth objective (see Kasprzyk et al. (2013) for 

an example). It is questionable whether all this information may be interpreted together in one 

figure.   

3.3 Stepwise reduction of the number of solutions 

In this section a stepwise reduction procedure is presented to come to a final decision for 

implementation based on the Pareto set: either putting additional constraints to objective 

function values or fixing certain decision variable values, i.e. choosing a measure to 

implement (for example because it is politically desirable for reasons that are not included in 

the considered objectives). These two approaches are the result of three interviews that were 

taken from policy officers that prepare decision making at three different local governments in 

the Netherlands (municipality of Amsterdam, city region of Amsterdam and province of 

Overijssel). Note that these two approaches may also be combined to make a selection, but for 

simplicity that is not done here.  

3.3.1 Using values of objective values 

Starting from all solutions in the upper left corner of Figure 6, one method (that was 

suggested by policy officers during the interviews) to stepwise reduce the number of solutions 

in the Pareto set is to put additional constraints to objectives after optimization. In this 

example, first an additional constraint to (normalized) PT operating deficit is set such that 

only solutions with a value lower than 0.4 are included. As a result 137 solutions of the 

original 210 solutions are left. One more constraint is put to CO2 emissions: in addition to the 

constraint to operating deficit, only solutions with a (normalized) value of lower than 0.2 are 

included. Only 20 solutions are left now in the selection. As can be seen in the lower left 

corner of the figure, this selection excludes all solutions with very low values for the other 

1430

1425

1420

1415

1410

Total CO2

emissions

(tons)
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two objectives: putting a bound on the values for CO2 emissions and PT operating deficit 

implies a bound for the other two objectives as well. A closer look at the objective PT 

operating deficit reveals that by the constraint for CO2 emissions, the best solutions for PT 

operating deficit are now also excluded. Finally, when the decision maker is satisfied by the 

values for CO2 and PT operating deficit that are set now, a logical choice from the remaining 

solutions is to find the best compromise solution for the other 2 objectives (in this example 

based on the normalized values).  

 

 

 

Figure 6: Stepwise reduction from all Pareto solutions to one solution to be implemented by setting 

bounds to objective values.  

3.3.2 Using values of decision variables 

Another method that was suggested by policy officers during the interviews to stepwise 

reduce the number of solutions is selecting certain values for decision variables form the 

Pareto set. An interactive design process arises, where political preferences (that were not 

included in the objective definitions) come into play in the search for a final network design 

to implement. This design of network scenarios after optimization has two advantages over a 

pre-definition of these scenarios. Firstly, during the choosing process (i.e. in a workshop), the 

values for objective values are immediately known for each Pareto solution, since the 

solutions have already been evaluated using the lower level model. Consequently, if a certain 

choice implies very bad scores for an objective that is considered to be important, the choice 

is likely to be reconsidered by the decision maker. Secondly, a suboptimal solution (given the 

four predefined objectives) is never chosen, since all solutions are in the Pareto set (i.e. non-

dominated) and therefore all possible as finally optimal solutions. 
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Figure 7: Stepwise reduction to one solution to be implemented by selecting values for decision variables.  

An example of such a reduction is shown in Figure 7. First, only solutions that have a 

frequency of 6 buses per hour on the bus line between Amsterdam Sloterdijk and Schiphol (in 

Dutch called óWesttangentô) are included. This results in 26 solutions that remain from the 

210 Pareto solutions, but for all four objectives, both solutions with low values and with high 

values are still included. A further selection is for solutions that also include a park-and-ride 

facility along this new bus line, at Schiphol-North. 7 solutions remain, but now only solutions 

remain with high values for OpD and low values for the other three objectives (see the upper 

right plot in Figure 5.14). As a next step selecting the solutions that include the train station in 

the village of Halfweg (between Amsterdam and Haarlem) result in 3 remaining solutions, 

which have similar scores for the objectives. Finally, if also the train station of Amsterdam 

Geuzenveld is included (also between Amsterdam and Haarlem), only one solution remains. 

The result of choosing these measures for implementation is a low value for TTT, USU and 

CE, but a very high value PT operating deficit. This example shows that pre-setting only 4 

decision variables already may result in selecting only one Pareto solution, with consequences 

for objective values (in this example a very bad score for OpD). Furthermore, all other 33 

decision variables are indirectly fixed to a value in this way 

 

3.4 Choosing compromise solutions 

A direct method to select a preferred solution is to search for the best compromise solution, or 

more formally, the min-max solution (see Eq. 2, where 
wZ  represents the normalized value 

for objective w and CW  is the compromise subset of objectives, that may also contain all 
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objectives in W ). Note that the normalization procure influences the results: choosing a 

suitable normalization procedure is relevant, but not considered here. 

( )( ) arg min max ( )
C

C

W w
w Wy P

BCS P Z y
ÍÍ

=     (2) 

In Figure 8 for two different subsets of objectives the best compromise solution is plotted. 

First, the best compromise is sought for all four objectives (the left plot in the figure). This 

shows that a compromise solution exists with reasonable scores for all four objectives 

simultaneously: with a relative score of around 0.3, for all objectives this solution has a score 

in the lower end of the range. Second, the best compromise is sought for OpD and CE (the 

right plot in the figure). This shows that, although OpD and CE are mainly opposed, low 

values for both objectives are possible simultaneously. However, this comes with a price: 

especially TTT scores much worse when focussing only on OpD and CE.  

 

Figure 8: Compromise solution for all four objectives (left) and for OpD and CE (right) 

3.4.1 Defining priorities among objectives 

When looking for compromise solutions, all objectives are not necessarily equally important, 

especially if these objectives are normalized. Instead of using equal preferences when 

determining a compromise solution, it is also possible to use different preferences. In a 

parallel coordinates plot this may be visualized as in Figure 9: all 4 objectives are ópushed 

downô until only one solution remains, but instead of a horizontal line a differentiation is 

made per objective. In the example in the figure, the relative values of CO2 emissions and PT 

operating deficit are equally valued and also the relative values of total travel time and urban 

space used are equally valued, but the first two are seen as more important than the latter two 

(since the constraint for the latter two is tighter). Both relative difference in importance (Eq. 

3, using coefficients for relative importance per objective wRW ) and absolute difference (Eq. 

4, using coefficients for absolute difference in importance 
wAW ) may be used to choose the 

compromise solution. The result of applying one of these formulas is the selection of one 

compromise solution, representing the preferences of the decision maker concerning the four 

objectives considered in the analysis. 

( )( ) arg min max ( )
C

C

W w w
w Wy P

RBCS P RW Z y
ÍÍ

=    (3) 
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( )( ) arg min max ( )
C

C

W w w
w Wy P

ABCS P AW Z y
ÍÍ

= +    (4) 

 

Figure 9: Constraints after optimization, differentiated per objective functions 

4 Conclusions 

In this paper an optimization framework is set up to design a multimodal transportation 

network, based on a predefined set of candidate locations for network developments. The 

framework is applied to a real world case study with 37 decision variables. The result of the 

optimization process is an estimation of the Pareto set, consisting of 210 possibly optimal 

solutions.  

 

By this approach, a much larger area of the feasible region is investigated than would have 

been the case if a few pre-defined scenarios were investigated in advance, resulting in better 

scores on objectives. The case study shows that the framework is applicable for real life study 

areas and that it provides insights into trade-offs between objective values, which is useful 

information for decision makers. 

 

In this specific case, a strong trade-off exists between the urban space used by parking and 

operating deficit: a high quality, but expensive public transport system is needed to attract 

former car users. Furthermore, to certain extent it is possible to reduce travel time while also 

reducing climate impact. This is caused by the multimodal decision variables, that promote 

the sustainable mode of public transport, by making it faster.  

 

Furthermore, methods are presented to stepwise reduce the number of solutions in the Pareto 

set, to finally select one solution for implementation during multi-objective driven option 

prioritization. This can be done by setting bounds to objective function values until one 

solution remains or by selecting best compromise solutions (possibly by interactively 

selecting priorities for objectives). Another possibility is to select certain measures, that may 

be politically desirable, but only if these measures are included in Pareto optimal network 


