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Abstract

Given a range of traffic related sustainability problems, the qureRiropolicy makers arises

what measures should be taken to reach their objectives as much as possiblebjbuiitie
optimization is useful to support these decisions, because it results in an overview of possibly
optimal solutions.This Paretoset canbe very large, especially if more than two (mainly
opposed) objectives are involved. This is also the case when optimizing infrastructure
planning in a multimodal passenger transportation network, with accessibility, use of urban
space by parking, operagjrdeficit and climate impact as objectivdethods are presented to
identify promising solutions from the Pareto set. This involves addinggpdishization
constraints to objective functions values, selecting certain decision variables (i.e. measures to
be taken) based on political preferences and looking for thetegtromisesolutions. These
methods make the Pareto set more useful as decision support inforreigien they
demonstrate the next step in nudbjective option prioritization

Keywords

Multimodal passenger transportation networks, rabifective optimization, multicriteria
analysis, decision support, genetic algorithm
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1 | ntroducti on

Highly urbanized regions in the world nowadays face well known sustaingimtiblems in

the traffic system, like congestion, use of scarce space in cities by parking of vehicles and the
emission of greenhouse gases. A shift from car to public transport (PT) modes is likely to
alleviate these problems. Optimal extension of the Bftvork contributes to this shift by
enhancing the quality of trips made by PT. However, investments in PT infrastructure require
large financial recourses. To take more advantage out of the existing PT infrastructure,
facilitating an easy transfer from pate modes (bicycle and car) to PT modes (bus, tram,
metro, train) may stimulate the use of PT, without the need for big investments in large
infrastructural developments. This transfer can be eased by network developments that enable
multimodal trips (thtacombine private and public modes), like opening new park and ride
facilities, opening of new train stations or opening new or changing existing PT service lines.

When such transportation network developments are planned, the decision is often based on
an evaluation of a few prefined scenarios. The composition of the scenarios is usually
based on expert judgment, and the assessment usually is executed using multi criteria
analysis. However, the scenario that is selected as the best may not be tveradsit can

very well be that this scenario can be improvEaterefore aother method is to optimize the
network (known as the network design problem, NDP), for example maximizing the
accessibility subject to constraints on externalities, such amessien reduction target or a
budget constraint. This results in one optimal network solution. However, it does not provide
insight in the dependencies between objectives, i.e. the extent to which the objectives are
opposed or aligned and no informatiompisvided on the possibilities to improve the network
further if the budget is slightly increased. Another common method is to combine a set of
objectives using a weighted sum, where the weights represent the compensation principle
between the objectiveslowever, setting these weights is not trivial: if these are determined

in advance, uncertainty concerning these weighting factors is not incorporated and the
sensitivity of the outcome to these factors is not known in advance. For these reasons in this
paper another approach is adopted, acalbed multi objective network optimization, that
enables us to identify tradefs between objectives (see alSoello Coello (200§. Still this

is a simplification of real world decision making, where even a specific aspect of the problem
(i.e. sustainability) may be operationalized in several ways. However, when the objectives are
defined in cooperation with the decision makers, the most important aspects are explicitly
taken into account.

NDPs have received a lot of attention in the literature, in many different versions. One
subclass of problems is the transit network design gnopivhich has been studied in various
ways, as reviewed b@uihaire and Hao (2008This includes greedy algorithms, evolutionary
algorithms and design meetings involving expert judgments. Another subclass of problems is
the unimodal road network design problem, which has laésm widely studied (Yang and

Bell 1998).

As is also identified in thenore recenteview byFarahani et al. (20)3amore specific class

is the combination of public and private modes: the multimodal network design problem. In
this area, previous studies addressed several decision problems and, accordingly, several ways
to model the choices that travellers have in atimoldal network of which the most relevant
studies are mentioned hefdiandoabchi et al. (20)2design road link capacity and bus
routes using two types of evolutionary metaheuristics, where the traveller may choose modes
betweencar and bus in the lower leveHamdouch et al. (20Q07describe the problem of
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pricing private and public links, with a mode choice for the traveller betwaeand car
combined with metroGarcia and Marin (20Q02ocus on park and ride: parking capacity and
pricing are decision variables and modeich between car, metro and park and ride are
available in the modelJchida et al. (2007focus on development of a prolbased lower

level model, where the multimodal network is modelled by a hgpewvork, enabling
advanced modelling of trips that combine private and public modes. The NDP problem is
addressed as well, on a primitive network with the frequency of 2 PT lines as decision
variables, for which a local linear approximation is formulated to obtain a solution efficiently
in terms of time.

Another more specific class is considering the NDP as a -ohjkictive problem. For
examples, the following relations between objectives lea found in the literature. Travel
time and construction costs clearly compete in the case of road network @&semet al.,
2010. Travel time and CO emissions clearly compete in the case of urban road network
desgn (Cantarella and Vitetta, 20R6Next, Sumalee et al. (2009nclude three objectives:
social welfare improvement, revenue generation and equity and show thabftsadeist
between all three objectives. Finallyjiandoabchi et al. (20)2maximise user benefits,
passenger share of the bus mode, service coveragmiaimlises average generalized travel
cost for a bus mode trip simultaneously, but does not give any insight into how these
objectives interac

To our knowledgeMiandoabchi et al. (2032s the only paper combining mulbbjective
optimization with a multimodal NDP, considering both new street construction and lane
additions / allocations as well as redesign of bus routes. The focus is on the development of
the metaheuristics to solve the problem: the performance of a hybrid genetic algorithm and a
hybrid clonal selection algorithm are compared, using multiple test netwirkhe lower

level, car and bus are distinguished as separate modes.

Thefirst contribution of this paper is to apply mudtbjective optimization to the multimodal
NDP, including multimodal trips in the lower level: the traveller can choose betveasn a
single private or public mode, or using a combination of public and private modes (a mode
chain). This enables a focus on multimodal network developments as decision variables,
combining park and ride and new train stations (that can also be reaghmdycle) with
frequency setting of PT lineShis optimization problem is described in section Zhe
optimization frameworks appliedon a real world networksection 2.2). Tie usefulness of

the methods illustrated by a clear presentation of theformation that is provided by the
Pareto optimal set, in the forof tradeoffs between objectivegsection 3.1 and 3.2As a
second contributignwe show the next step in mulbbjective driven option prioritization, by
presening a stepwise reductioprocedurethat enabés decision makers to choose one final
solution for implementation(section 3.3), and a method to choose a final solution by
interactively setting weights (section 3.4). In section 4 of the paper we draw conclusions.

2 Probl em definition

The transportation network design problem is often solved aseaddioptimization problem
(Farahani et al., 20)3to correctly incorporate the reaction of the transportation system users
to network changes, as is argueddeyl'Olio et al. (200bandTahmasseby (2009seeFigure

1. The upper level represents the behaviour of the network authority, optimizing system
objectives. In the lower level the travellers minimize their own generalized costs (e.g. travel
time, cost), by making individually optimal cites in he multimodal networkg¢onsidering
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variety in travel preferences among travellers. The network design in the upper level interacts
with the behaviour of the travellers in the network: the lower level. The lower level is a
constraint for the upper level griem, since the upper level cannot dictate the behaviour of

the users in the lower level.n& network design the network authority choosesults ina

network state (e.g. travel times afholws), from which thesystemobjectives can be derived.

The btlevel linear programming problem is already N&d (Gao et al., 2005 so any
problem of this type is Ndard. Therefore, heuristics are needed to solve thevei NDP for

larger networks. The huge number of feasible solutions andtheamvexity of the objective
function necessarily requires the adoption of metaheuristic algorifbnisAci er no et
2014).

Network state

Figure 1: The bi-level optimization problem

Upper level:
Optimizing system objectives

Decision variables

Lower level:
Optimizing objectives of individual users

2.1 Mathematical formulation

2.1.1 Network and demand definition

The multimodal transportation network is defined as a directed @baglonsisting of node
setN, link setA, a line selL and a stop sdil. For each link one or more modes are defined
that can traverse that link with a certain speed and capacity: the link characteyistics
Transportation zones andtas origindR and destinationS and are subsets df Total fixed
transportation demand is stored in a matrix with siz&|k|§. Furthermore, transit service
linesL are defined as ordered subs&tsvithin A and can be stop services or express services.
PT flows can only traverse transit service lines. Transit stations or Gtaps defined as a
subset withinN. Consequently, a linetraverses several stops. The travel time between two
stops and the frequey of a transit service linkare line characteristic€, . Access / egress
modes and PT are only connected through these stops. Whether a line calls ata sktp

is indicated by stop characteristi€s. All together, the transportation network is defined by
G(N, A LU), whereA, L andSare further specified b, C, andC,.

2.1.2 Optimization problem

We define a decisiovectory (or a solution) that consists ol decision variables:
y={ Y %, %} Yis the set offeasiblevalues for the decision vectoy (also called
decision space). The objective vectar (consisting of W objective functions,

Z :{Zi,---, Z,, -, ZN}) depends on the value of the decision vegtdevery Z is part of the
so called objective spacand in principlez may be any value iiR", but depending on its
meaning, an objective function may be subject to natural boimttss paper we will suffice
with a formulation that states that the lower level should bsen equilibrium ¢ee Eqg. 1 and
section2.1.4. For a more detailed formulation of the optimization problem we refer to
(Brands and van Berkum, 2014

minZ(y), subjectto
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yiy (1)
G(N, AcaW). Y G). ¢ g(_))) satisfies SUE fo

2.1.3 Multi -objective optimization: Pareto optimality

Mathematically, the concept of Pareto optimality is as follows. If we assume two
decision vectors Y. Y. [ Y, then Y, is said to strongly dominate Y. iff
Z (y)<ZN(y) "W (also written asy <y) Additionally, Y, Is said to weakly
domlnate(or covel Y. iff Z W(Y) ¢ Zw(y) "W (also written asy =Y. ). All solutions
that are not weakly “dominated by another known solution are possnbly optimal for the
decision maker: these solutions form the Paggitimal setP.

2.1.4 Lower level model

The lower level model calculates the network flows through the multimodadork.
Therefore, transportation demand is assumed to be fixed, but mode choice and route choice of
travelers is flexible. As defined in the previous section, the decision variables typically
involve multimodal trip making, for example a park and rideility involves combining car

and PT to a park and ride trip and a new train station may involve combining bicycle and PT
to a bike and ride trip. To correctly take into account these effects, combinations of different
access and egress modes are defimedode chains. These mode chains are seen as separate
modes in the mode choice model, which comprises a nested logit model with choice between
car and PT in the main nest and choice between mode chains in the PT subnest. More details
of this model can b®und in(Brands et al., 2013a

2.2 Study area

The case study area covers the Amsterdam Metropolitan Area in The Netherlands (Figure 2).
This area has an extensive multimodal network with pedestrian, bicycle, car and transit
infrastructure. Transit consists of 586 bus lines, 42 tram and metro lind8@rtdain lines,

which include local trains, regional trains and intercity trains. Bicycles can be parked at most
bus stops and at all train stations. A selection of transit stops facilitatesanmhrikie
transfers. Origins and destinations are aggregate 102 transportation zones. Important
commercial areas are the city centres of Amsterdam and Haarlem, the business district in the
southern part of Amsterdam, the harbour area and airport Schiphol. Other areas are mainly
residential, but still smallranedium scale commercial activities can be found.
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Figure 2: Map of the study area, showing transportation zones, railways, roads
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2.2.1 Objective functions

In this paper we consider 4 policy objectives related to sustainability, concerning
accessibility, us of urban space by parking, climate impact and costs. These objectives are
operationalized as follows (more details can be foun@rands and van Berkum, 20)4In

our case of a fixed total demand, total travel t{fi€T) is used to represent accessibility in

Z,. The urban space used by park{tupV) is represented by the number of car trips to or
from zones that are classified as highly urban, because such a trip requires a parking space
that cannot be used for other urban land ugg$. (These alternative land uses give additional
value to propertyLuttik, 2000. Operating deficit of the PT systef@pD) is formulated as

Z,, rather than as a budget constraint, to provide explicit insight in the relation between costs
and other objectes. Cost parameters follow from Dutch PT operating practice;, CO
emissiongCE) represent climate impack(). All 4 objectives are to be minimized.

2.2.2 Decision variables

In the network of the study area, 37 decision variables aneetdigilated to transfer facilities

or to PT facilities.The decision variables are based on regional policy documents and on
interviews with policy makers in the study ar€ar every potential network development, a
decision variablg, is defined in advancésee table 1)Opening / closure of train stations,

intercity status of train stations and opening / closure of park and ride (P&R) facilities are
represented by binary variables. For transit line frequency, a discrete setaef cphtons is
predefined, depending on the expected load for that transitNigtevork developments are
only included as a candidate locatiorsjfatial and capacity constraints are rket. example,

a P&R facility is only potentially opened if the copesding station is served by PThe
characteristicof links, lines and stops that are not candidate locations are fixed at one value.
Furthermore, the car and bicycle networks are assumed to belfixinils case, the feasible
regionY contains approxi@tely 7*10° possible decision vectors.

Table 1: Overview of decision variables in the multimodal network design problem.

Decision var Possible Represents

. : Description
iable indexv  values ofy, real value P
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1-6 {0,1 Existence  Opening / closure of train stations
7-9 {0,1 Existence Intercity status of train stations
10-16 {0,3 Existence  Opening / closure of P&R facilities
17,21,22,24 {0,123} {0,4,8,12 Frequency of bus lines
18,19,20,23 {o0,:,2,3} {0,2,4,4 Frequency of bus lines
2532,34,36 {0,%} {0,3 Frequency of local train lines
33,35 {023 {0,2,4,4 Frequency of local train lines
37 {0,1 Existence  Extension of a tram line

2.3 Solution method

The otimization problem defined indE 1 is solved using the evolutionary algorithth
NSGAII (Kollat and Reed, 2006 This method was earlier shown to outperform the -well
known predecessor of the algorithm NSGADeb et al., 200Rwhen applied tahe same case
studyin Brands et al. (2014b especially when limited function evaluations are possible due
to high computation time. A more detailed description of the algorithm can be found in the
same paper.

3 Resul ts

The optimization algorithm produces a Pareto set as a .réBuit Pareto set contains
information, that is presented in various ways in this section. This helps to better understand
the network design problem in a multimodal contaxd to finally choose one solution from

the Pareto set for implementationa muli-objective option prioritization procedsirstly, the
tradeoffs between objectives are shown. Examples are shown for pairs of objectives that are
mainly opposed to each other and where the relation between the two is less clear. The latter
case is clafied by plotting the corresponding values of a third objective. Secoadhgpwise
reduction procedure is presentethabling decision makers to choose one final solution for
implementation, based on additional bound to objective functions as welkasrgekpecific
measures to be implemented.

In total 2384 solutions were calculated during the execution of the algorithm. From these
solutions,210 were Pareto optima(i.e. nonrdominated. This Pareto set is an approximation

of the real Pareto set, since it would take too much computation time to calculate all solutions
and thus the true Pareto set is not known. For the case study, the calculation of one solution
takes approximatel§.5 minutes, implying that execution of the optimization algorithm takes
almost twoweelsof computation time (using a comput e
@ 2.8GHz and a 4 GB RAM). Note that t8&ISGAII algorithm has possibilities for parallel
computing (d solutions in one generation could in theory be computed in parallel), if it
would be desirable to reduce computation time.

3.1 Traditional visualisation

The scatter plot shown in Figuiis a common way to visualize a Pareto set, especially to
show tradeoffs between objectives. Since only two objectives can be shown per objective,
several plots are needed to show all interactions between objectives in a scatterplot matrix
(Lotov and Miettinen, 2008 Here, only 2 pairs of 2 objectives are wino The plots also

show solutions which are not Pareto optimal when only the two objectives in the plot are
considered, but these solutions are Pareto optimal as a result of the four considered objectives
during optimization. The first plot for urban spagsed (USU) and PT operating deficit
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(OpD) shows a clear tradgdf. The first improvements in USU are cheap, but further
improvements become more expensive in terms of OpD. The second pair of objectives is total
travel time (TTT) and C@emissions (CE). Tése objectives are rather in line with each
other: two clusters may be observed, one with lower TTT and lower CE and one with higher
values for both objectives. On the other hand, within the lower left cluster also affrade
between the two objectivesrcae observed.
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Figure 2: Two scatter plots of the Pareto set: one dot represents one solution in the set, where the
corresponding scores for the two objective values can be read on the two axes.

A parallel coordinates plot (see Figuecapture all 4 objectives in one plot (as used earlier

by Kasprzk et al. (2013)). Normalization per objective is required in this type of plots,
because the four objectives have different orders of magnitudenorhwlized values range

from O to 1, corresponding to the minimum per objective and the maximum jeetivd

When interpreting these normalized value, note that one objective may have a large absolute
difference between maximum and minimum values and another objective may have a small
absolute difference (in case the first objective can be influencedgbtrby the decision
variables and the latter objective cannot). This is especially relevant when weight factors are
used to combine normalized objectives.

In a parallel coordinates plot tradéfs between objectives cannot be observed as directly as
in a scatter plotUsing a colour scale to represent one specific objective value improves this.
When looking at the colour distribution, it can be observedHtiggt TTT implies low OpD,

but usually also high USU. The relation with CE is less clear, but roughly TTT and CE are in
line (as was earlier observed in the scatter pRijting the objectives in a different order on
the horizontal axis and colouring lealson different objectives may provide different insights.
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Figure 3: Parallel coordinates plot of the Pareto set: one line represents one solution, where the
normalized values of the 4 objective values are plotted in the 4 columns. The lines are colalusing their
value for total travel time.

3.2 More dimensional scatter plots

By using different colours for the dots in a scatter plot, one additional objeciiveudedin
the scatter plot (see Figudig. This way of visualisation is earlier referredamdecisionmap
(Lotov and Miettinen, 2008)A limited number of categoridis definedfor the 3° objective
which correspond toypes of dots as shown in the legemtis type of representation can for
instance be used to visualizeeteffectof introdudng a constraint for the'3objective on the
Pareto fronof the two objectives at the axase. its effect on which solutions remain Pareto
optimal and their related outcormmencerninghe two other objectives.
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Figure 4: A 2D scdterplot for total travel time and operating deficit, with a distinction between CO,
emissions categories (also called decision map).

It can be observed that solutions with high CE only occur in an area of the plot with low OpD
and medium to high TTT. Otlne other hand, a very interesting observation is that when only
solutions with low CE emissions are considered (i.e. less than 1350 tons), still a large
variation exists in scores for TTT and OpD. With other words, when an additional constraint
is set fo CE, there is still a choice possible between solutions with low TTT, with low OpD
or tradeoff solutions with intermediate values for both objectives.

A similar plot is shown in Figure 5, where th& 8bjective is represented by a continuous
colour sale.This could be referred to as a continuous decision map. It contains more detailed
information then the decision map based on categories, but it may be more difficult to read.
Which of the two to prefer depends on the desired accuracy of’tbbj&ctve. Especially in

the centre of the plot interesting traglié information is found: the solutions closest to the
lower left corner of the plot are the best when only TTT and OpD are considered (assuming
the corresponding weight factor), but moving dditb the upper right direction results in a
large gain in CE at little costs in terms of TTT and OpD.
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Figure 5: Continuous decision mayof the Pareto set

It is even possible to include information on more objectives in such a figure, by using arrows
instead of dots in a scatter plot, where the orientation of the arrow represents a fourth
objective and the size of the arrow represents a fifth objectiveK@gmzyk et al. (2013fpr

an example). It is questionable whether all this information may be interpreted together in one
figure.

3.3 Stepwise reductionof the number of solutions

In this section a stepwise reduction procedure is presented to come to a final decision for
implementation based on the Pareto set: either putting additional constraints to objective
function values or fixing certain decision rigble values, i.e. choosing a measure to
implement (for example because it is politically desirable for reasons that are not included in
the considered objectives). These two approaches are the result of three interviews that were
taken from policy offices that prepare decision making at three different local governments in
the Netherlands (municipality of Amsterdam, city region of Amsterdam and province of
Overijssel). Note that these two approaches may also be combined to make a selection, but for
simplicity that is not done here

3.3.1 Using values of objective values

Starting from all solutions in the upper left corner Kifjure § one method (that was
suggested by policy officers during the interviewsjteEpwise reduethe number of solutions

in the Parto set is to put additional constraints to objectives after optimization. In this
example, first aradditional constraint to (normalized) PT operating deficit is set such that
only solutions with a value lower than 0.4 are includéd.a resultl37 solutims of the
original 210 solutions are left. One more constramiut to CQ emissions: in addition to the
constraint to operating deficit, only solutions with a (normalized) value of lower than 0.2 are
included Only 20 solutions are left now in the seien. As can be seen in the lower left
corner of the figure, this selection excludes all solutions with very low values for the other
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two objectives: putting a bound on the values for,@issions and PT operating deficit
implies a bound for the other twabjectives as well. A closer look at the objective PT
operating deficit reveals that by the constraint for,@@issions, the best solutions for PT
operating deficit are now also excluded. Finally, when the decision maker is satisfied by the
values for CQand PT operating deficit that are set now, a logical choice from the remaining
solutions is to find the best compromise solution for the other 2 objectives (in this example
based on the normalized values).
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Figure 6: Stepwise reduction from all Paeto solutions to one solution tde implemented by setting
bounds to objective values.

3.3.2 Using values of decision variables

Another method that was suggested by policy officers during the interviewsefowise

redue@ the number of solutionis selectingcertain values for decision variables form the
Pareto setAn interactive design process arises, where political preferences (that were not
included in the objective definitions) come into play in search for a final network design

to implement.This design of network scenarios after optimization has two advantages over a
pre-definition of these scenarios. Firstly, during the choosing process (i.e. in a workshop), the
values for objective values are immediately known for each Pareto solution, since the
solutions have already been evaluated using the lower level model. Consequently, if a certain
choice implies very bad scores for an objective that is considered to be important, the choice
is likely to be reconsidered by the decision maker. Secondly, gtomad solution (given the

four predefined objectives) is never chosen, since all solutions are in the Pareto set-(i.e. non
dominated) and therefore all possible as finally optimal solutions.
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Figure 7: Stepwise reduction to one solution to be impleméed by selecting values for decision variables.

An example of such a reduction is shown in FigdreFirst, only solutions that have a
frequency of 6 buses per hour on the bus line between Amsterdam Sloterdijk and Schiphol (in
Dutch cal |l edarebintleded. This megudtsnin 26 )solutions that remain from the
210 Pareto solutions, but for all four objectives, both solutions with low values and with high
values are still included. A further selection is for solutions that also include aparide

facility along this new bus line, at Schipkgbrth. 7 solutions remain, but now only solutions
remain with high values for OpD and low values for the other three objectives (see the upper
right plot in Figure 5.14). As a next step selecting the salgtibat include the train station in

the village of Halfweg (between Amsterdam and Haarlem) result in 3 remaining solutions,
which have similar scores for the objectives. Finally, if also the train station of Amsterdam
Geuzenveld is included (also betwetmsterdam and Haarlem), only one solution remains.
The result of choosing these measures for implementation is a low value for TTT, USU and
CE, but a very high value PT operating deficit. This example shows thaetireg only 4
decision variables alreganay result in selecting only one Pareto solution, with consequences
for objective values (in this example a very bad score for OpD). Furthermore, all other 33
decision variables are indirectly fixed to a value in this way

3.4 Choosing compromise solutions

A directmethodto select a preferred solution is to search for the best compromise solution, or
more formally, the mirmax solution (see E®, where Z, represents the normalized value
for objectivew and W, is the compromise subset of objectives, that may also contain all
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objectives inW). Note that the normalization procure influences the results: choosing a
suitable normalization procedure is relevant, but not considered here.

BCS, (P =arg min( MTM%XZV gy) @

yiP

In Figure 8 for two different subsets of objectives the best compromise solution is plotted.
First, the best compromise is sought for all four objectives (the left plot in the figure). This
shows that a compromise solution ##gi with reasonable scores for all four objectives
simultaneously: with a relative score of around 0.3, for all objectives this solution has a score
in the lower end of the range. Second, the best compromise is sought for OpD and CE (the
right plot in thefigure). This shows that, although OpD and CE are mainly opposed, low
values for both objectives are possible simultaneously. However, this comes with a price:
especially TTT scores much worse when focussing only on OpD and CE.
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Figure 8: Compromise soution for all four objectives (left) and for OpD and CE (right)

3.4.1 Defining priorities among objectives

When looking forcompromisesolutions, all objectives are not necessarily equally impqrtant
especially if these objectives are normalizédstead of usig equal preferenceswhen
determining acompromisesolution, it is also possible to use differgmeferencesin a

parallel coordinates plot this may be visualized as in FiQure a | | 4 objectives
d o wuanél only one solution remaindut insead of a horizontal line a differentiation is

made per objective. In trexample in thdigure, the relative values a£0, emissions and PT

operating deficit are equalialuedand alsahe relative values dbtal travel time and urban

space used are equallglued but the first two are seen as more important than the latter two

(since the constraint for the latter two is tight@&dth reldive difference in importance (£

3, using coefficients for relativienportance per objectiv®W,) and absolute differenc&d.

4, using coefficients for absolute difference in importa#ddd ) may be used to choose the

compromise solutionThe result of applying one of theserrfaulas is the selection of one
compromise solution, representing the preferences of the decision maker concerning the four
objectives considered in the analysis.

RBCS, ( B= arg erin( max RW 7 ( 5) ®)
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ABCS§, (B = ar% rpnin( max AW +7 9) ()

Figure 9: Constraints after optimization, differentiated per objective functions

4 Concl usi ons

In this paper an optimization framework is set up to design a multimodal transportation
network, based on a predefined set of candidate locations for network developments. The
frameworkis applied to a real world case study w&hdecision variables. The result of the
optimization process is an estimation of the Pareto set, consistidbOgiossibly optimal
solutions.

By this approach, a much larger area of the feasible regionastigated than would have
been the case if a few pdefined scenarios were investigated in advance, resulting in better
scores on objective3 he case study shows that the framework is applicable for real life study
areas and that it providessights inb tradeoffs between objective values, whichuseful
information for decision makers.

In this specific casea strong tradeff exists between the urban space used by parking and
operating deficit: a high quality, but expensive public transport system is needed to attract
former car userd-urthermoreto certain extenit is possible to reduce travel time whiéso
reducing climate impact. This is caused by the multimodal decision variables, that promote
the sustainable modé public transport, by making faster.

Furthermoremethods are presented to stepwise reduce the number of solutions in the Pareto
set to finally select one solution for implementatidaring multtobjective driven option
prioritization This can be done by setting bounds to objective function values until one
solution remains or by selecting besbmpromise solutions (possibly by intectively
selectingpriorities for objectives). Another possibility is to select certain measures, that may
be politically desirable, but only if these measures are included in Pareto optimal network



