Offline Share-a-Ride Problem: Taxi Sharing between Passenger and Package

Baoxiang Li, Tom Van Woensel, Hajo Reijers Eindhoven University of Technology, Eindhoven, Netherlands

We propose a multi-commodity sharing system referred to Share-a-Ride problem(SARP). The share-a-ride problem consists of designing vehicle routs and schedules for n multi-commodity requests between origins and destinations. The application of multi-commodity sharing system can raise benefit, reduce cost, and alleviate urban congestion and environment pollution.

Why sharing?

Challenge facing:

- Congestions in urban area
- Low density area larger according the population decline
- Usage of public transport has significantly decreased(low axi occupancy rate)
- Delivery routes to individual consumers and retailers consist of fewer stops over longer distances

VS

High-density areas that haunted by congestion and pollution problems can be alleviated because combining people and freight means fewer vehicles.

Low-density areas combining people and freight can keep public transportation and freight transportation at socially acceptable levels in an economically viable way.

Academic contribution:

Richer the Dial-a-Ride-Problem models

The SARP-Model

Consider the attribute of passenger transport, we add people service constraint to the standard dial-a-ride-model. The objective function is minimize a combination of distance saving and unconvince fee paid to passenger.

Research School for Operations

Management and Logistics

Material and methods:

This model is tested on real taxi trajectory data sets of San Francisco and four group of artificial parcel data sets.

- --We apply boost library for distance calculation based on shortest path algorithm.
- -- Use CPLEX and GA for model solving

Result and conclusion:

Combining people and freight flows creates attractive business opportunities because the same transportation needs can be met with fewer vehicles and drivers.

Distance saving according separate delivery

Parcel distribution (OD) Model		scatter-cluster	cluster-scatter	cluster-cluster
FIM	high distance saving	No	No	No
SARP	high saving	low distance saving	low distance saving	No

