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Abstract 

Automated vehicles (AVs) are one of the hottest technological trends these days. Giant automotive 

companies and leading research institutes are extensively investing on these technologies claiming 

that the future of transportation will dramatically change as a result of these efficient and safe 

vehicles. Findings from the literature, however, do not necessarily comply with these claims. The 

results are two-faceted indeed. While initial research had argued that automated vehicles will 

significantly improve traffic efficiency and safety, recent findings have put doubt upon such 

optimistic expectations. Predicting the impacts of automated vehicles on traffic flow, however, is 

challenging due to several reasons. Firstly, there will be a transition period towards full autonomy 

where there will be a mix of fully automated, partially automated, and human-driven vehicles. This 

will result in more complexity and uncertainty in traffic flow. Secondly, different manufacturers will 

probably use their own driving automation algorithms and control logic, which will further 

complicate the problem. Finally, the performance and driving behavior of AVs are continuously 

changing based on newly collected data and their improved backend algorithms. On the other hand, 

current attempts for evaluating the impacts of AVs on traffic efficiency and safety usually are limited 

to modifying traditional traffic flow models, which consider a limited number of surrounding objects 

and thus are not suitable for complex urban environments, where there are multi-agents of different 

types. Accordingly, the purpose of this research is to develop a diverse and realistic microsimulation 

environment suitable for the impact assessment of automated vehicles in complex environments, 

where there are also human-driven vehicles and vulnerable road users (VRUs). To this end, we will 

develop a generic framework for training a set of diverse motion planning models by combining 

theory and AI, and utilizing both available datasets and simulation environments. The output of the 

proposed framework would be models for automated vehicles that are applicable in microsimulation 

tools and can replicate different driving policies and strategies and undertake complex maneuvers in 

urban areas. This set of models is used as a base for building a diversified simulation environment 

that aims at traffic and safety impact assessment of automated vehicles and unraveling the complex 

interactions between AVs and their surrounding environment in urban areas. Moreover, this 

simulation environment could be used for evaluating the performance of state-of-the-art motion 

planning and prediction (MPP) algorithms as current simulation environments developed for such 

purposes lack diversity, meaning that the behaviors of other agents in the simulation environment 

are simplified and assumed relatively homogeneous. Therefore, the actual performance of MPP 

algorithms in complex and diverse environments is questionable. Using a diverse simulation 

environment is an opportunity to evaluate the more realistic performance of such algorithms. 
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Introduction 

Automated vehicles have been a matter of debate for a long time in both public and academic 

circles. While many believe that these technologies will positively revolutionize the future of smart 

cities and roads condition, others cast doubt upon the benefits of automated vehicles for traffic flow 

efficiency and safety and believe expectations won’t be met at least in the short and mid-term [1]–

[3]. Predicting the true impacts of these technologies on traffic flow is challenging and faces a lot of 

uncertainties. Firstly, recent findings in vehicle automation have revealed that achieving full 

automation, where the vehicle is able to run autonomously in all conditions, will take a longer time 

compared to initial expectations, and there will probably be intermediate levels (i.e., partial 

automation) before achieving full autonomy [4]. Therefore, in the transition period toward full 

automation, a mixed traffic flow comprising human-driven vehicles and different levels of 

automated vehicles (AVs) will exist, which will increase the complexity and uncertainty of traffic 

flow. Moreover, even if we achieve full autonomy, it will probably take a long time for fully 

automated vehicles to dominate the traffic flow [5]. Thus, at each stage, we will face different 

penetration rates of multi-level automated vehicles.  

However, these are not the only challenges of modeling and predicting the dynamics of 

traffic flow with the presence of automated vehicles. In the transition period (and even after 

achieving full autonomy), different manufacturers will probably use their own driving automation 

algorithms and control logic. In other words, two (fully) automated vehicles from different 

companies will probably behave differently in the same situation. However, most of the current 

studies assume a harmonized and homogeneous behavior for automated vehicles [6]–[8]. 

Accordingly, in order to evaluate the impacts of automated vehicles on traffic flow, it is important 

to take into account the heterogeneities in their control logic and driving strategies.  

Moreover, most of the current microscopic traffic flow models have been developed based 

on deterministic physics rules and human perception and decision-making logic [6], while the 

control logic behind current driving automation systems covers a wide range from deterministic and 

theory-based approaches to probabilistic and data-driven methods (or a combination of them) [9]–

[14]. As it happens, recent advancements in artificial intelligence have pushed the automation efforts 

even more toward data-driven and learning-based methods [12], [15]–[17]. This implies that the 

automated vehicles’ behavior will probably change and improve over time based on evolving 

technologies and algorithms, as well as newly collected data. Therefore, traditional microscopic 

models might not be sufficient for replicating these learning-based, evolving control logics, 

especially if we are interested to study the dynamics of traffic flow in the transition period toward a 

harmonized, relatively stable society of automated vehicles. In addition, traditional microscopic 

traffic flow models usually take a limited number of surrounding objects into account to make 

decisions about their future states. This simplification might not be realistic in complex urban 

environments where multiple agents of different types, such as cyclists and pedestrians, exist and 

therefore, intricate maneuvers are required [18]. 

 Wrapping the above discussions, the main objective of this research is to develop an AI-

based framework for modeling the motion planning of automated vehicles in complex environments, 

which can reproduce diverse driving styles and strategies suitable for evaluating the impacts of such 

technologies on traffic flow efficiency and safety. AI-based here means the developed framework is 

built upon artificial intelligence (learns from data and over time), but at the same time may benefit 

from theory (it is not purely data-driven). This framework is used as a base for building a diversified 

simulation environment that aims at traffic and safety impact assessment of automated vehicles and 

unravelling the complex interaction between AVs and their surrounding environment in urban areas 

including human-driven vehicles and vulnerable road users (VRUs). Moreover, this diverse and rich 

simulation environment could be also used for evaluating the true performance of state-of-the-art 

AVs’ motion planning and prediction (MPP) algorithms. Current simulation environments for 

testing and evaluating the newly developed MPP algorithms lack diversity, which means the 
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behavior of other agents in the simulation environment are simplified and assumed relatively 

homogeneous [19], [20]. Therefore, the actual performance of such algorithms in complex and 

diverse environments is questionable.  

Methodology 

Figure 1. shows an overview of the methodology for conducting the proposed research. It 

consists of three main steps: Design, Development, and Application. These three phases are further 

elaborated on in the following sections. 

 

 
Figure 1 The overall structure of the proposed research 

Design 

The main objective of this phase is to come up with a generic framework for developing 

motion planning algorithms for automated vehicles that have the following characteristics: 
1. They are learning-based, which means they can learn and improve over time (based on new 

inputs). This is important because the current trend toward developing motion planning and 

control algorithms for automated vehicles is using learning-based methods that improve over 

time and based on new input data. This is in contrary to traditional efforts for modeling AVs 

in simulation tools, which mainly try to modify the parameters of mathematical car-following 

or lace-changing models.  

2. They benefit from theory and are not a purely data-driven, black-box framework. This is also 

important because the resulting trajectories from the developed framework should be 

interpretable, consistent with physics laws, and transferable to unseen conditions. 

3. They learn from both demonstrations and simulation environments. This gives us the 

opportunity to train and enrich the developed motion planning models for the purpose of our 

research. Due to the scarcity of autonomous vehicles’ datasets, relying only on available 

datasets will probably lead to a model trained for specific conditions for which there has been 

enough training data. Relying only on simulations environments also has the risk that those 

environments are not the perfect representation of the real world. 
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4. Finally, the designed framework should enable the resulting motion planning models to learn 

and reproduce different driving styles and strategies based on the enforced policies. It is the 

final aim of this research to build a diverse and realistic simulation environment, which is 

representative of different driving policies that is the result of distinct motion planning 

algorithms developed and used by different companies and research institutes (instead of 

assuming a harmonized, homogeneous logic for all Avs in the simulation).  

In this framework, the role of AI and theory are clearly defined, and the procedure through 

which the model is going to learn different driving policies and strategies is described. Also, this 

framework considers the constraints applicable to the scope of the research, which is urban areas 

with multiple objects of different types including human-driven vehicles, pedestrians, and cyclists.  

Another important prerequisite for developing such a diverse simulation environment is to 

identify the relevant and meaningful driving policies that replicate the real-world situation. 

Therefore, the aim of the second sub-section of this phase is to define the appropriate driving policies 

that are going to reproduce different driving styles and strategies for automated vehicles. The driving 

styles and strategies include (but are not limited to) different levels of aggressiveness, selfishness, 

and safety assurance.  

Development 

In the next step, which is referred to as the development phase, the defined policies are 

formulated into mathematical terms and equations to make them implementable by artificial 

intelligence methods, such as reinforcement learning. Then, the available datasets and simulation 

environments are used to train a set of diverse AI-based motion planning models suitable for 

microsimulation studies. Offline learning (learning from demonstrations) and online learning 

(learning via actions and rewards in simulation environments) are combined with the aim to 

compensate for the shortcomings of each of these learning methods. For instance, there are few 

demonstrations (true trajectories) of automated vehicles available, and relying on these limited 

datasets will result in models with unknown behavior in unseen conditions. Moreover, utilizing only 

available, limited datasets will prohibit us from developing a diverse set of models that replicate 

different driving strategies because those datasets, in the best case-case scenario, will represent the 

driving policies behind the vehicles used for data collection. On the other hand, relying only on 

simulation tools is not the best solution because they might not be the best representatives of the real 

world, either because the models behind other surrounding objects (like human-driven vehicles and 

VRUs) might not be realistic enough or the environment itself is a simplified version of the real 

world. Therefore, we intend to benefit from both approaches.  

In a nutshell, we make use of the already-existing datasets to pre-train a base model and then 

utilize the simulation environments to enrich it. Enriching here means to improve a pre-trained 

model for edge case scenarios or situations for which there were not enough data in the training 

dataset, or to enforce the defined driving policies into it. The output of this step will be a set of 

motion planning models that can replicate a variety of driving styles and strategies, which are the 

bases for building the intended simulation environment that is suitable for the impact assessment of 

AVs and performance evaluation of MPP algorithms. 

Application 

In the third and last phase, we utilize the developed framework to build a diverse and rich 

simulation environment. This simulation environment is then utilized for two main purposes:  

1. conducting scenario-based impact assessments: After developing a set of diverse motion 

planning models for Avs, we try to answer an important question: “how will automated vehicles 

affect traffic flow in the transition period towards a harmonized, fully automated society?” To 

this end, we apply the developed motion planning models for automated vehicles, in conjunction 

with suitable models for human-driven vehicles (HVs) with acceptable perception mechanisms, 

in a simulation environment to reproduce diverse driving behaviors for both AVs and HVs. This 
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behavior-aware simulation environment will be used to evaluate the impacts of automated 

vehicles on traffic flow under different assumptions about the penetration rate of AVs at different 

levels of automation and driving styles and strategies.  

 

2. evaluating the applicability of (other) newly developed AI-based motion planning 

models in a diverse and complex simulation environment: Finally, we are going to 

address a relatively neglected issue in testing and evaluating the motion planning and prerdiction 

algorithms for AVs. Most of the current simulation environments for evaluating such algorithms 

lack diversity, which means the behaviors of other agents in the simulation environment are 

assumed relatively homogeneous [19], [20]. Therefore, the actual performance of such 

algorithms in complex and diverse environments (such as mixed traffic flow with a variety of 

AVs and HVs) is questionable. Using a diverse simulation environment is an opportunity to 

evaluate the more realistic performance of these algorithms. 

  



       

7 

 

Bibliography 

[1] Q. Lu, T. Tettamanti, D. Hörcher, and I. Varga, “The impact of autonomous vehicles on urban 

traffic network capacity: an experimental analysis by microscopic traffic simulation,” Transp. 

Lett., vol. 12, no. 8, pp. 540–549, Sep. 2020, doi: 10.1080/19427867.2019.1662561. 

[2] T. Muhammad, F. A. Kashmiri, H. Naeem, X. Qi, H. Chia-Chun, and H. Lu, “Simulation 

Study of Autonomous Vehicles’ Effect on Traffic Flow Characteristics including 

Autonomous Buses,” J. Adv. Transp., vol. 2020, 2020, doi: 10.1155/2020/4318652. 

[3] S. C. Calvert, W. J. Schakel, and J. W. C. van Lint, “Will automated vehicles negatively 

impact traffic flow?,” J. Adv. Transp., vol. 2017, 2017, doi: 10.1155/2017/3082781. 

[4] C. Badue et al., “Self-driving cars: A survey,” Expert Systems with Applications, vol. 165. 

Elsevier Ltd, Mar. 01, 2021, doi: 10.1016/j.eswa.2020.113816. 

[5] S. E. Shladover, “Connected and automated vehicle systems: Introduction and overview,” J. 

Intell. Transp. Syst., vol. 22, no. 3, pp. 190–200, 2018. 

[6] H. Yu et al., “Automated vehicle-involved traffic flow studies: A survey of assumptions, 

models, speculations, and perspectives,” Transp. Res. Part C Emerg. Technol., vol. 127, Jun. 

2021, doi: 10.1016/j.trc.2021.103101. 

[7] A. Talebpour and H. S. Mahmassani, “Influence of connected and autonomous vehicles on 

traffic flow stability and throughput,” Transp. Res. Part C Emerg. Technol., vol. 71, pp. 143–

163, 2016, doi: 10.1016/j.trc.2016.07.007. 

[8] Y. Liu, J. Guo, J. Taplin, and Y. Wang, “Characteristic analysis of mixed traffic flow of 

regular and autonomous vehicles using cellular automata,” J. Adv. Transp., vol. 2017, 2017, 

doi: 10.1155/2017/8142074. 

[9] Y. Huang and Y. Chen, “Survey of State-of-Art Autonomous Driving Technologies with 

Deep Learning,” in Proceedings - Companion of the 2020 IEEE 20th International 

Conference on Software Quality, Reliability, and Security, QRS-C 2020, 2020, pp. 221–228, 

doi: 10.1109/QRS-C51114.2020.00045. 

[10] C. Zhao, L. Li, X. Pei, Z. Li, F. Y. Wang, and X. Wu, “A comparative study of state-of-the-

art driving strategies for autonomous vehicles,” Accid. Anal. Prev., vol. 150, Feb. 2021, doi: 

10.1016/j.aap.2020.105937. 

[11] Y. Wang, Z. Liu, Z. Zuo, Z. Li, L. Wang, and X. Luo, “Trajectory Planning and Safety 

Assessment of Autonomous Vehicles Based on Motion Prediction and Model Predictive 

Control,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8546–8556, Sep. 2019, doi: 

10.1109/TVT.2019.2930684. 

[12] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning 

techniques for autonomous driving,” J. F. Robot., vol. 37, no. 3, pp. 362–386, Apr. 2020, doi: 

10.1002/rob.21918. 

[13] B. R. Kiran et al., “Deep Reinforcement Learning for Autonomous Driving: A Survey,” IEEE 

Trans. Intell. Transp. Syst., 2021, doi: 10.1109/TITS.2021.3054625. 

[14] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning 

and control techniques for self-driving urban vehicles,” IEEE Trans. Intell. Veh., vol. 1, no. 

1, pp. 33–55, 2016, doi: 10.1109/TIV.2016.2578706. 

[15] X. Di and R. Shi, “A survey on autonomous vehicle control in the era of mixed-autonomy: 

From physics-based to AI-guided driving policy learning,” Transp. Res. Part C Emerg. 

Technol., vol. 125, no. February, p. 103008, 2021, doi: 10.1016/j.trc.2021.103008. 

[16] F. Ye, S. Zhang, P. Wang, and C. Y. Chan, “A survey of deep reinforcement learning 

algorithms for motion planning and control of autonomous vehicles,” IEEE Intell. Veh. Symp. 

Proc., vol. 2021-July, no. Iv, pp. 1073–1080, 2021, doi: 10.1109/IV48863.2021.9575880. 

[17] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and Decision-Making for 

Autonomous Vehicles,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 

1. Annual Reviews Inc., pp. 187–210, May 28, 2018, doi: 10.1146/annurev-control-060117-



       

8 

 

105157. 

[18] S. Suo, S. Regalado, S. Casas, and R. Urtasun, “TrafficSim: Learning to Simulate Realistic 

Multi-Agent Behaviors,” 2021. 

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open Urban 

Driving Simulator,” no. CoRL, pp. 1–16, 2017, [Online]. Available: 

http://arxiv.org/abs/1711.03938. 

[20] P. A. Lopez et al., “Microscopic Traffic Simulation using SUMO,” IEEE Conf. Intell. Transp. 

Syst. Proceedings, ITSC, vol. 2018-Novem, pp. 2575–2582, 2018, doi: 

10.1109/ITSC.2018.8569938. 

 


	Abstract
	Introduction
	Methodology
	Design
	Development
	Application

	Bibliography

