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Integrated traffic control strategies are those that aim to combine different control measures into one
system, resulting in a much more flexible and effective model that can be used in a wider variety of
scenarios when compared to only using single measures or multiple uncoordinated systems. For example,
one advantage of integrated strategies is that they can be used to coordinate intersections across urban
and motorway networks [1]. This can be beneficial as conditions on one are usually influenced by the
other, such as where queuing on motorway on-ramp spills back onto local roads [2]. Typically, these
systems aim to combine measures such as Variable Speed Limits (VSL), Variable Message Signs (VMS),
Route Guidance (RG) and ramp metering [3, 4, 5]. VSL manages congestion by dynamically adjusting
the speed limit according to traffic conditions (usually between 60 and 120km/h) and is also important
in increasing traffic safety by homogenising and reducing the speed of vehicles [6]. One simulated case
study in Toronto showed that VSL was able to reduce the potential of a crash by 5-17% [7]. VSL is also
effective at improving the performance of ramp metering measures, as combining the two can significantly
improve total travel time when there is limited queuing capacity on a ramp [8]. Most VSL algorithms
are either categorised as optimal control algorithms, such as model predictive control [9], or rule-based
algorithms, such as fuzzy logic controllers [10]. However, deep-reinforcement learning (DRL) approaches
have also been applied to VSL, including actor-critic networks [11]. RG, also called dynamic rerouting,
can be useful in cases of non-recurrent congestion as it aims to route drivers away from unpredictable and
congested conditions, such as those caused by accidents [12]. This is typically done by calculating a new
optimal route once congestion or an incident has been detected [13] and is implemented through VMS
located on gantries above the motorway. Similarly, VSL is implemented through some variation of VMS
or digital information signs, although the amount of information given to drivers and their responses to
the signs can vary [14].

Many integrated traffic control strategies use rule-based approaches where different control measures
are selectively activated according to defined thresholds and the current conditions [15]. Framing traffic
control systems as a non-linear optimisation problem also allows for the use of numerical optimisation
[16] or evolutionary algorithms [17, 18]. However, there have also been many reinforcement learning
(RL)-based strategies proposed, including many Q-learning applications, that combine ramp metering
with VSL or VMS [19, 20]. In general, RL approaches have the advantage that they do not require prior
knowledge of the environment to operate [21] and they avoid the sensitivity to traffic prediction methods
in model predictive control [22]. For example, Q-learning learns to relate possible environment states to
an optimal action to take, and is proven to always converge to an optimal solution [23]. Unfortunately,
as this is done by updating a lookup table with discretised state and action sets, this type of algorithm
can have limited applicability to problems with complex, continuous spaces when not using a function
approximator [19]. The advantages of RL approaches also come with many other challenges in their
design, particularly when focusing on coordinated systems, such as the issue of scalability. The “curse of
dimensionality” is a well-known issue within reinforcement learning and refers to the dramatic increase
in computational resources and training data needed as the state-action space grows [21]. In coordinated
traffic management, this becomes apparent as the network and the number of control points become
larger, and the algorithm has to consider more data, learn more parameters and generate more actions.
To combat this, many decentralised learning approaches have been proposed [3, 19, 24] that aim to share
the computational load and data across multiple individual agents that can learn and coordinate with
each other.
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This research will therefore aim to analyse how can we design an effective, and importantly scalable,
framework for integrated traffic control systems that coordinates multiple control measures such as ramp
metering, variable speed limits and message signs. This will be achieved through four studies, each
analysing different aspects of RL and DRL-based systems. The first two studies will involve researching
traffic state classification and examining how to consider both local and network-wide information during
operation. They will also consider how to balance agents acting cooperatively and competitively where
they may interfere with one another. The third study will focus on evaluating centralised and decentralised
learning, and analyse how to most efficiently coordinate large numbers of agents. Lastly, the fourth study
will focus on ramp metering and queuing considerations, specifically how to use network queue capacity
and balance optimising mainline flow and reducing delays at on-ramps. Ultimately, the research will
culminate in the development of a new model using the framework, which will be applied to a simulated
example of the motorway ring road around Rotterdam, and its evaluation in comparison to other methods.
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